天津公务员考试数量关系之数学运算42
1.某年级有84名学生,其中男生的年龄之和是女生的3倍。3年后,男生的年龄之和比女生年龄之和的3倍少36岁。问该年级男生有多少人?
A。48 B。54 C。60 D。66
2.甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别是8、7和17分,甲得了一个第一名,已知各个比赛项目分数相同,且第一名的得分不低于二、三名得分的和,那么比赛共有多少个项目?
A。3 B。4 C。5 D。6
3.三名小孩儿中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数,且依次相差6岁,他们的年龄之和为多少岁?
A.21 B.27 C.33 D.39
4.桌面上有两个半径分别为2厘米和40厘米的圆环,让小圆环沿着大圆环外边缘滚动一圈,则小圆环滚动的圈数是:
A.10 B.20 C.40 D.80
5.A、B两地相距1350米,甲和乙分别从A、B两地出发,相向而行。已知甲的速度为4千米/小时,乙的速度为5千米/小时,1分钟后两人调头反方向而行,再过3分钟,两人再次调头反方向而行,以此类推,再过5、7、……(连续奇数)分钟调头而行,请问,出发多少分钟后两人才能相遇?
A。9 B。25 C。49 D。81
【天津公务员考试网参考答案及解析】
1.C【解析】若男生人数为女生人数的3倍,则3年后,男生的年龄之和仍然为女生的3倍。3年后男生年龄之和比女生年龄之和的3倍少36岁,说明男生人数比女生人数的3倍少36÷3=12人,故女生人数为(84+12)÷(3+1)=24人,男生为84-24=60人。
2.B【解析】全部比赛前三名的总分为8+7+17=32分,每个项目前三名的分数和至少是3+2+1=6分,所以每个项目前三名的分数和应该是32的大于6的约数,只能是8、16、32;如果是16或32,因为甲得了一个第一,所以甲的得分应大于8,不合题意,所以每个项目前三名的分数和是8分,共有项目32÷8=4个。
3.C【解析】6以下的质数有2、3、5,2+6=8不是质数,3+6=9也不是质数。因此最小的那个年龄为5岁,他们的年龄之和为5+11+17=33岁。
4.B【解析】圆的周长之比等于半径之比,所以大圆的周长是小圆的20倍,即小圆需要滚动20圈。
5.D【解析】如果两人不调头走,两人相遇需要1350÷1000÷(4+5)×60=9分钟。如果以初始方向为正方向,则两个人分别走了1、-3、5、-7、……分钟的路程,由于9=1-3+5-7+9-11+13-15+17,则出发后1+3+5+7+9+11+13+15+17=81分钟两人相遇。
阅读此文的人还阅读了:
天津公务员考试数量关系之数学运算41 点击分享此信息:
相关文章