天津公务员考试数学运算每日练习(2017.3.9)
1.有一批不同类型、不同牌号的汽车在江边等待轮渡,其中有轿车8辆,越野车5辆,大巴车2辆。已知渡轮中只有4个车位,且每辆轿车占用1个车位,每辆越野车占用2个车位,每辆大巴车占用4个车位。问至少需要几次轮渡(往返算一次)才能将这批汽车全部运完?
A.15
B.6
C.7
D.3
2.张、王、刘和李四人进行象棋比赛,每两人之间都要赛一局。已知张胜了两局,王平了三局,问刘和李加起来最多胜了几局:
A.0
B.1
C.2
D.3
3.某研究小组调研有关人们使用电子设备的课题,随机抽取500人,其中每天使用手机的有401人,每天使用平板的有288人,每天使用电脑的有353人,且每天三种设备均使用的人数与至少使用两种的人数比为3:4。此次调查结果中有18人每天不使用任何电子设备。则此次调查的人中至少使用两种电子设备的人数有多少人?
A.90
B.120
C.240
D.320
参考答案与解析:
1.C【解析】按照每种汽车占用的车位,每次运送都能够保证轮渡中无空位。故所需总车位=8×1+5×2+2×4=26个,需要26÷4=6次余2,故至少需要7次才能全部运完。
2.B【解析】根据单循环赛规则,一共是进行了场比赛。王平了三局则有王的三局比赛结果都是平局,不会出现胜负,即刘、李与王比赛的结果均平;接下来张胜了两局,就一定是胜了刘、李,即刘、李均负;最后一局未确定结果的比赛就是刘对李,出现平局或者胜负,最多只有一方胜。综上,故刘、李加起来最多胜利1局。
3.D【解析】设每天只使用两种设备的有x人,每天使用三种电子设备的有y人,根据三集合容斥原理可得:401+288+353-x-2y=500-18,可得x+2y=560;根据每天三种设备均使用的人数与至少使用两种的人数比为3:4,则y:(x+y)=3:4,联立方程解得x+y=320人。