您的当前位置:天津公务员考试网 >> 行测资料 >> 数量

2021年天津市公务员考试行测备考:特殊模型之“和定最值”

发布:2020-12-16 14:58:26 字号: | | 我要提问我要提问
       期为各位考生带来了2021年天津市公务员考试行测备考:特殊模型之“和定最值”。相信行测考试一定是很多考生需要努力攻克的一道坎儿。行测中涉及的知识面之广,考点之细,需要开始做到在积累的同时掌握一定的解题技巧。天津公务员考试网温馨提示考生阅读下文,相信能给考生带来一定的帮助。
  更多天津公务员考试复习技巧详见 2021年天津公务员考试教程点击订购
  仔细研读下文>>>2021年天津市公务员考试行测备考:特殊模型之“和定最值”
  特殊模型之“和定最值”
  行测考试成绩非常重要,小编跟大家交流的就是行测考试数量关系中的一个高频考点,叫和定最值。

  一、什么是和定最值:

  已知多个数的和,求其中某一个的最大值或最小值。

  例:有21个金币要分给5个海盗,请问分的最多的人最多分多少?

  二、解题原则

  若要某个量越大,则其他量要尽可能小。

  若要某个量越小,则其他量要尽可能大。

  三、常考考点

  (一)同向求极值

  同向极值指的是在和一定的条件下,要求其中最大量的最大值或最小量的最小值。

  例题1:有21个金币要分给5个海盗,若每个人分得的数互不相同,请问分的最多的人最多分多少?

  A.10 B.11 C.9 D.8

  【解答】答案:B。5个海盗分的总量一定,根据思路,要求第一名的最多分多少,则要让后四名海盗的分的尽量少,所以应该分别为:1、2、3、4分,此时第一名份的为:21-1-2-3-4=11分,故答案选B。

  (二)逆向求极值

  而逆向极值指的则是在和定的条件下,要求最大量的最小值或最小量的最大值。

  例题2:有21个金币要分给5个海盗,若每个人分得的数互不相同,请问分的最多的人最少分多少?

  A.7 B.8 C.9 D.10

  【解答】答案:A。要求的是分得金币最多的人至少分多少,根据原则,其他量尽可能大,这样我们用方程的思维就能理解了,根据各不相同。可知,假设最大的为X,接下的依次为X-1,X-2,X-3,X-4。得到5X-10=21,解得X=6.2。最小都是6.2,答案只能是7。

  以上就是和定最值的解题思路以及技巧,这是一种特殊模型。其实行测中,有很多这样的题型,大家要好好准备。

点击分享此信息:
没有了   |   下一篇 »
RSS Tags
返回网页顶部
CopyRight 2020 http://www.tjgkw.org/ All Rights Reserved 皖B2-20110080-11
(任何引用或转载本站内容及样式须注明版权)XML